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Abstract—The buffer overflow is still an important problem
despite the various protection methods developed and widely used
on most systems (Stack-Smashing Protector, ASLR and Non-
eXecutable). Most of these techniques rely on keeping secret
some key information needed by the attackers to build the
exploit. Unfortunately, the architecture of most web servers allows
attacker to implement brute force attacks that can be exploited to
obtain those secrets by mean of brute force attacks, and eventually
break into the server.

We propose a modification of the stack-smashing protector
(SSP) technique which eliminates brute force attacks against the
canary. The technique is not intrusive, and can be applied by just
pre-loading a shared library. The overhead is almost negligible.

The technique has been tested on several web servers and on
a complete GNU/Linux distribution by patching the standard C
library. We expect that the strategy presented in this paper will
become a standard technique on both desktop and servers.

I. INTRODUCTION

A decade ago, buffer overflows, specially stack smashing,
was the most dangerous thread to computer system security.
Over the last years, several techniques have been developed
to mitigate the ability to exploit this kind of programming
faults [1], [2]. StackSmash Protector (SSP), Address Space
Layout Randomization (ASLR) and non-executable stack (NX)
are widely used in most systems due to its low overhead,
simplicity and effectiveness.

Following the classic measure/counter-measure sequence,
a few years after the introduction of the each protection
technique a method to bypass, or reduce its effectiveness, was
introduced. The SSP can be bypassed using brute force or
by overwriting non-shielded data [3], [4]; the ASLR can be
bypassed using brute force attacks [5]; and the NX, which
effectively blocks the execution of injected code, can be
bypassed using ROP (Return Oriented Programming) [6]. In
spite of the existing counter-measures, those techniques are
still effective protection methods, in some cases they are the
only barrier against attacks, until the software is upgraded to
remove the vulnerability.

Unfortunately, the forked and pre-forked networking
servers architecture are specially prone to brute force attacks.
All the children processes inherit/share the same memory
layout and the same canary than the parent process. The
attacker can try in bounded time all the possible values of
canary (for SSP) and memory layouts (for ASLR) until the
correct ones are found. There is a very dangerous form of SSP
vulnerability, called byte-for-byte, which allows the attacker to
try each byte of the canary independently, which allows to find
the value of the canary with just a few hundreds of trials (the
system is defeated in seconds).

We present a modification of the SSP technique which
consist on setting a new random value of the canary for each
child process when the fork() system call is invoked. The
technique is called RAF SSP (Re-new After Fork SSP).

Re-randomise the canary has not been seriously consid-
ered [4] mainly due to two factors: first, the protection increase
is only by a factor of 2, on average, when compared with the
standard SSP on a system with no other protection techniques.
And second, the complexity of the implementation would not
worth the protection improvement.

The RAF SSP technique greatly increases (several orders of
magnitude) the difficulty of an attack when the three protection
techniques (SSP+ASLR+NX) are employed, as it is the case
in most systems. Regarding the problems that may cause a
canary change on a running process, we have identified that
the error confinement that represents each forked thread is also
a de-facto stack confinement which allows to change the value
of the reference canary with no impact on the correct operation
of process.

A. Benefits of our proposal

The main properties of the RAF SSP are:

• It can be used just pre-loading shared library. There is no
need to modify the source code of the networking servers,
nor recompile the server, nor modify system libraries nor
the compiler.

• It prevent brute force attacks against canary stack
protection mechanism.

• The SSP byte-for-byte attack is no longer applicable to
the RAF SSP.

• Multiplies the effectiveness of the combined protection of
the SSP, ASLR and NX techniques. On a standard 32bit
system the cost of breaking a system takes 512 times
more trials, on average (from 223 trials to 232 on a 32bit
system).

• The overhead introduces is negligible.

The RAF SSP is specially useful for networked server, but
it is not limited to them. We have tested it on a complete
Linux distribution by modifying the standard C library, with
full functionality and no appreciable performance penalty.

II. BACKGROUND & ASSUMPTIONS

A. Network server architectures

Network server software architectures has been an exten-
sively studied and analysed due the importance of the web
servers in the current network infrastructure. Attending to
the processing model, we will focus on two basic models,



paying special attention to the robustness of each approach. A
complete list of the models is out of the scope of this paper
(see [7]).

Multi-thread: each connection is handled on a dedicated
thread. Multiple clients can be attended concurrently with a
low overhead. The main drawback is that a crash of any thread
may kill the whole server or let the server in an inconsistent
state. There is a single error confinement region: the server
process.

Multi-process: each connection is handled by a separate
(child) process. There are two variants: forking server, where
a child process is created explicitly to serve each request. As
soon as the client request is finished the child process exists.
The server process is able to attend client requests at any time,
except while the child is being created (while forking). The
other variant is the pre-forking server. Several sub-processes
are forked before any connections are handled (when the
server starts). Each child blocks for a new connection, handles
the connection and then waits for the next connection. This
removes the overhead of the fork() call at the time of
accepting a new connection. The crash of a child process
has a limited impact on the operation of the server, only the
client that caused/suffered the crash have a failure. The error
confinement region for this mode is isolated of each process.

A good compromise between performance and robustness
(error confinement) is the hybrid multi-process multi-threaded
used in Apache.

B. The stack smashing protection SSP

The first proposal was presented in [8] and improved over
the years. Without loss of generality, we will assume that the
stack grows downwards, i.e. to lower addresses. We will use
the x86 architecture in the examples.

The SSP technique [9] is a compiler extension which adds
a guard (the canary) between the protected region of the stack
and the local buffers. Initially, the canary was placed right
after the return address since it was the target of most attacks.
Over the years, new attack strategies where developed (see
section III) which motivated some enhancements [10]. As of
GCC v4.6.3 the stack-smashing protector consists of:

• Both, the return address and the saved stack frame pointer
are guarded by the frame canary.

• Local variables are reordered so that buffers are located
first (higher addresses) and below them the scalar vari-
ables and the saved registers. This way, buffer overflows
(which typically grows upwards) will not overwrite scalar
variables.

Figure 1 sketches the layout a stack with two function frames.
The reference-canary is represented as a small bird on the
right side, and the frame-canary is the bird on each frame.
The compiler emits extra code in the prologue and epilogued
of each protected function for initialising and checking the
value of the canary respectively.

The value of the canary is chosen such that: prevents,
when possible, the effective exploitation of a buffer overflow;
and detects the occurrence of an overflow. Attending to these,
two (XOR canaries are not included because they have more
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Fig. 1. x86 Stack layout.

overhead that the other types and the same properties as
random canaries) kind of canary values has been proposed:

• Terminator value: the value is composed of different string
terminators (CR, LF, NULL and -1).

• Random value: the value is a random value selected
during the process initialisation. The attacker needs to
know the actual value for building the exploit. As far as
the value is kept secret, the attack will be prevented.

In most implementations, the canary value is a word with
all bytes random except one that is zeroed.

Since the value of the canary is not a constant but a
random value chosen when the program starts, that value has
to be stored somewhere in the program memory (Or in a
dedicated processor register if available). In the x86 and x86-
64 architectures the reference-canary is stored in special data
segment which is not accessible as a “normal” variable and
can be not overwritten or read abusing any data structure.

The numerical examples given along the paper are referred
to a GNU/Linux x86 architecture.

III. THREATS

In this section, rather than a detailed explanation on how
to bypass the SSP, we will present only the weaknesses of the
stack canary that enables the possibility of an attack. In [11],
the author explains the process to remotely exploit a buffer
overflow on systems equipped with these techniques.

Basically, there are two ways to bypass the canary:

1) Overwriting the target data (return address, function
pointer, etc.) without needing to overwrite the frame-
canary,

2) Overwrite the frame-canary with the correct value.

Obviously, the data that is not guarded by the canary
(exception handlers, function pointers in data structures, etc.)
are prone to other forms of buffer overflow, but since our
technique does not increase the coverage (detection capability)
of the basic canary technique but reinforces the protection of
the already protected items. We will focus on the brute force
attacks against the canary value.



The second way to bypass the canary requires that the
attacker knows the actual value of the canary. Processes created
with fork() are a duplicate of the calling process. Both,
father and child have the same canary value. On a forked
server, where the service is attended by children of the server
process, an attacker can build brute force attacks by guessing
the value of the canary as many times as needed.

Depending on the granularity of how the attacker can
overflow the buffer (word or byte overflow), there are two
different brute-force attacks: full brute force, and byte-for-byte.

A. Full brute force attack

The frame-canary word is overwritten on each trial. If the
guessed word is not correct then the child process detects the
error and aborts. As consequence, the attacker does not receive
a reply, which is interpreted as an incorrect guess. The guessed
value is discarded, and attacker proceeds with another value
until all the possible values are guessed.

On most 32bit systems the canary (word) has 3 random
bytes plus one zeroed. In the worst case, the number of trials
is 224; and 223 = 8388608 on average. This figures may deter
a remote attacker but not a local attacker, which may break
the system in a few hours.

B. Byte-for-byte brute force attack

If the attackers have a fine-grain control over the number
of bytes that overflows then a byte-for-byte attack can be
constructed. The attack consists on overwriting only the first
byte of the canary until the child does not crash. All the values
from 0 to 255 are tested sequentially until a success is got. The
last byte tested is the first byte of the canary. The remaining
bytes of the canary are obtained following the same strategy.

This kind of bug is very dangerous because a system is
broken with only 3 × 256 = 768 trials. For this reason, most
canary implementations set to zero one of the canary bytes (the
most significant in x86) for preventing the bfb attacks when
the overflow is performed by a string copy functions.

IV. PROPOSED STRATEGY

The following section first describes the strategy idea.
Below an example of stack evolution is described to clarify
the strategy. Finally a brief of some special cases where the
canary reference should be changed carefully.

A. Observations

Our proposal is based on the following observations:

Observation 1: Most applications, specially networking
servers, after a fork() operation the child process executes
a flow of code which ends with an explicit call to the exit()
system call. That is: the child process does not return from the
function that started the child code.

We have validated this observation, both 1) analysing
the code of several servers and 2) empirically by running a
complete GNU/Linux distribution where processes that returns
after a fork are killed.

Observation 2: Each child process of network server de-
fines an error confinement region. That is, any error that occurs
to a child will not affect the correct operation of the father and
siblings processes.

Observation 3: There is a single reference-canary per pro-
cess which is stored in a protected area and initialised during
the process start up. It is copied in each stack frame between
the saved stack frame and the buffers.

Observation 4: The integrity (compare the frame-canary
against the reference-canary) is only done at the end of each
function, right before the returning instruction.

Observation 5: Only the value of frame-canary of the
current stack is checked against the reference-canary.

B. Renew canary at fork (RAF SSP) strategy

The renew canary at fork (RAF SSP) strategy consist in
renew the value of the reference-canary of the child process
right after it is created (forked). The new value is also a random
value. Every child process have a different reference-canary.

From observation 1 we know that the child code would not
return and so the frame-canaries stacked will never be tested,
observation 5. Therefore, they do not need to be updated.

Although it is not difficult to check that a function never
returns, most compilers provides the noreturn function
attribute which declares a function as non-returning. The
compiler generates more efficient code and checks (at compile
time) whether the function honours the desired behaviour or
not. It is advisable that the function where the canary is
renewed has this attribute.

When the attacker guesses an incorrect value, the child is
killed by the stack protector detection mechanism and a new
child with a new canary is started. As a result, brute force
attacks can not be built.

C. Illustrative examples

Example 1: Figure 2 represents the evolution of the stack
of code on the left of the figure. Different canary values are
represented by different colours. When a function is called,
the stack frame is setup coping the reference-canary into the
frame-canary (see stack state at time 1). Upon return, the
frame-canary is compared with the reference-canary, which is
represented by a black diamond with an equal sign inside. The
renew_canary() operation changes only the reference-
canary, the stack is not modified (from time 3 to 4), and it
defines a point of no-return. The current function (foo() at
time 4) can not return since there will be a mismatch between
the reference and the frame canaries.

Note that the frame-canary of the previous stacked frames
keep the old reference-canary value while the new frames have
the new canary (times 5, 6 and 7). As far as the process never
returns from those functions it would not a problem. Also,
note that the same function (bar() on times 2 and 6) have
different frame-canaries when called with different reference-
canaries and return correctly in both cases.

If the function that changed the reference-canary returns
(time 8) there will a canary mismatch which will result in a
process abort.



void bar(){
return;

}
void qux(){
bar();
return;

}
void foo(){
bar();
renew_canary();
qux();
return;// Fails

}
int main(){
foo();
return 0;

}
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Fig. 2. Stack evolution of a program which changes the reference-canary.

Example 2: Figure 3 shows the state of the stack and the
reference-canary on a forking-server using the RAF SSP
technique. All the stack frames used by a child have the
same frame-canary value, which is different from the father
and from other children. Since each child process defines an
error confinement region, our strategy randomises the canary
on each confinement region.
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In the case of a forking server, each client is attended by
a different child process. Since the child always terminates
after attending the client, the canary is renewed on every
connexion regardless whether it is requested by a legal client
or an attacker. On a pre-forked architecture, a child is running
and attending requests until it is killed (by the main server

void server(){ | void Attend(){
... | foo();
while(1) { | ....

client=WaitClient(); | }
if (fork()==0) { | int foo(){ bar(); }
renew_canary(); |
Attend(); | int bar(){ qux(); }
_exit(); |

} | char qux(){};
} ... |

Listing 1. Basic forking server example.

process to reduce the number of active processes, or because
it has been crashed as a result of an attack).

Taking into account observation 4, the frame-canary of a
non-returning function is never checked against the reference-
canary. Therefore a non-returning function can safely change
the value of the reference-canary. All subsequent function calls
(invoked from the non-returning function) will use the new
reference-canary for building the stack frame. Upon returning,
the canary checks will match because the reference-canary and
the frame-canary will be the same (assuming the stack has not
been smashed).

D. Special considerations

The setjmp()/longjmp() library provides control
flow facility that breaks the “normal” control flow of functions:
call and return sequence. The setjmp() saves the stack
context/environment in a variable that can later be restored by
longjmp() function. This backward jump does not involve
any return operation and does not check the integrity of the
frame-canaries, therefore it can be safely used. But, if the
reference-canary has been renewed between the time when the
setjmp() was called and when the longjmp() is invoked,
then there will be a mismatch between the reference-canary
and stack-canary on the function where the setjmp() was
performed.

This special case can be addressed in two different ways:

• Do not return from functions that call setjmp(). This



behaviour can be forced by declaring that functions as
noreturn. Note that the function that uses setjmp()
can call nested functions at any time, but can not return.

• A more robust and transparent to the application solu-
tion consist on modifying the struct where setjmp()
saves the context/environment by adding a new field to
store the value of the reference-canary at the time the
setjmp() is called. Later the longjmp() will restore
the reference-canary value using the stored one. With this
solution there is no limitation of the control flow.

V. IMPLEMENTATION

A prove of concept of the of the proposal has been
implemented as a shared library which overrides the fork()
call. The library is called libraf.so, the code of the library
is in listing 2.

The fork() function, on listing2, calls the native
fork() function and then the reference-canary of the child
is renewed calling the renew_rnd_stack_chk_guard()
function, which is basically a copy of the code library code to
setup the canary. All but one bytes are random values read from
/dev/urandom, which is the same source of randomness
that the one used by the standard canary.

#ifdef __i386__
# define THREAD_SET_STACK_GUARD(x) \

asm ("mov %0, %%gs:0x14" ::"r" (x) : "memory");
#elif defined __x86_64__
# define THREAD_SET_STACK_GUARD(x) \

asm ("mov %0, %%fs:0x28" ::"r" (x) : "memory");
#endif
pid_t (*native_fork) (void);
static void __raf_fork_init(void) {

native_fork = dlsym(RTLD_NEXT, "fork");
if (NULL == native_fork) {

fprintf(stderr, "Error in ‘dlsym‘: %s\n",
dlerror());

}
}
static void renew_rnd_stack_chk_guard(void) {

union {
uintptr_t num;
unsigned char bytes[sizeof (uintptr_t)];

} ret;
const size_t ranb = sizeof(ret.bytes) - 1;
ret.num = 0;
int fd = __open("/dev/urandom", O_RDONLY);
if (fd >= 0) {

if (__read(fd, ret.bytes + 1, ranb) == ranb){
THREAD_SET_STACK_GUARD(ret.num);

}
__close (fd);

}
}
pid_t fork(void) {

pid_t pid;
if (native_fork==NULL) __raf_fork_init();
pid = real_fork();
if (pid == 0) renew_rnd_stack_chk_guard();
return pid;

}

Listing 2. Implemented as a pre-load shared library: libraf.so.

Although the compiler will not add stack protector code to
none of this functions because they do not have local buffers
(larger than 8 bytes), it is advisable to compile the shared
library with the option -fno-stack-protector to be

sure that the compiler does not add it. Otherwise, the canary
renewal will be detected as a stack corruption and the program
aborted.

In order to use the new version of fork(), the server
has to be launched with the LD_PRELOAD=libraf.so as
follows:

$ LD_PRELOAD=libraf.so apachectl start

Another way to include the proposal in a running sys-
tem is by modifying the standard C library. We tested
the proposal modifying the code of the fork() function
of the GNU eglibc. Nevertheless, for brevity we describe
it as a new library call, raf_fork(). The modification
basically consists on calling again the canary setup code
_dl_setup_stack_chk_guard) right after calling fork.

void renew_canary(void) {
/* Renew the stack checker’s canary. */
uintptr_t stack_chk_guard =

_dl_setup_stack_chk_guard (NULL);
#ifdef THREAD_SET_STACK_GUARD
THREAD_SET_STACK_GUARD (stack_chk_guard);

#else
__stack_chk_guard = stack_chk_guard;

#endif
}
pid_t raf_fork (void) {

if (fork()==0) renew_canary();
return pid;

}

Listing 3. Implemented as a new service: raf_fork().

The modification of the setjmp/longjmp family consist
on increasing the size of the jmp_buf array, to store the value
of the current reference-canary at the setjmp (which is done
with just one assignment instruction), and restore it on the
longjmp function.

VI. STATISTICAL EVALUATION

We analyse the protection provided by RAF SSP as both, a
stand-alone technique and when combined with the ASLR and
NX techniques. The cost is measured as the number of attempts
(trials) needed by the attackers to break-in the system. Since
the NX technique prevents remote code injection, in order to
exploit a stack smash vulnerability it is necessary to bypass
the canary plus the ASLR at once, presented in section VI-B.
The unrealistic attack to the canary as a stand alone technique
has been included for completeness.

Let k be the number of trials until the system is defeated,
let c the number of different values that can take the canary,
and let j by the number of different positions where the ASLR
can place the code.

The system is broken when the secrets are correctly
guessed. We are interested in the probability distribution of
the process defined as: “the probability that the first success
requires k number of trials”. Larger values of k is good for
the defenders and bad for attackers.

The plots shown in figures 4 and 5 are for a standard
Ubuntu 32 bits system, where the canary has 3 bytes (which
gives a range of c = 224 values) and the ALSR has 8 bits
(256 values) of entropy. Note that the 256 values of the ASLR



entropy is the best case for the attackers assuming that only
a mapped library (typically the libc) it is enough to build the
attack.

A. Bypassing only the canary

As described in section III there are two main ways to
attack the canary: full search and byte-for-byte.

Full search attack: Statistically, the brute force attack is
described as a “sampling without replacement” and since
all the values has the same probability ( 1c ) it is modelled by
the uniform distribution with a support range of [1, c] and a
mean of c+1

2 .

When the RAF SSP is used, the attacker can not do a brute
force attack because incorrect values can not be discarded. The
only strategy for an attacker is to select a valid canary value
(it does not matter the value) and keep trying the same value
until the canary matches with the randomly chosen by the
server. The attacker can change the value of the tried canary
but it does not improve the chances to have a match. This trial
process is described as “sampling with replacement” and it
is modelled by a geometric distribution with a support range
of [1,∞[ and the mean is c.

The standard SSP requires at most 224 trials1 to be sure
that the canary value is found, but with the RAF SSP it is
impossible to cover all the cases. On average, the RAF SSP
requires only 2 times more trials to be broken. Three times the
mean is needed to have a 95% probability of breaking in.

Byte-for-byte attack: On a byte-for-byte attack, the process
of finding each byte is modelled as a uniform distribution
whose mean is 256/2 and the support range is [1, 256]. The
attack to the three (for 32-bit systems) or seven bytes (64-
bits systems) is modelled as the sum of 3, or 7, uniform
random variables respectively. Using the central limit theorem
the resulting distribution can be approximated to a Normal
distribution with µ = 256n/2, where n is the number of
random bytes of the canary (n = log2(c)/8), and support of
[1, 256n].

When the RAF SSP is used, the byte-for-byte attack can not
be employed because any incorrect guess will trigger a renew
of the full canary (all the bytes), which invalidates any previous
correctly guessed byte. Therefore, the attacker is forced to use
the sampling with replacement against the full canary. Figure 4
compares the cumulative distribution function (CDF) of the
attack to a b-f-b exploitable overflow using the standard SSP
and the proposed RAF SSP. The x-axis is in logarithmic scale.

With the standard SSP, the attacker needs at most 768 trails
to break the system (and 384 in average). With this figures, the
standard canary technique provides a weak protection for this
kind of bugs. On the other hand, the RAF SSP disables the
ability to split the attack into bytes, and so, the same attacker
requires 224 = 16 × 106 trials on average to break it (it is
a geometric distribution with µ = c), which represents an
improvement of 5 orders of magnitude.

1On an 32bits Ubuntu.
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Fig. 4. Byte-for-byte vulnerability.

B. Bypassing SSP + ASLR + NX

In a real system, all these three complementary techniques
are used simultaneously. Therefore, in order to exploit the fault,
the attackers must:

1) Bypass the NX protection. The NX prevents the execution
of injected code, the attackers are forced to “re-use” the
code already present in the process by means of ROP
programming.

2) Bypass the SSP protection. Which consists on finding the
actual value of the canary.

3) Bypass the ASLR protection. Which requires to know the
absolute address of the attacker’s code, i.e. the entry point
of the ROP sequence.

The attackers have to prepare/program the ROP sequence
offline. If we suppose that the attackers know the code of the
server then only the address of the entry point to the ROP
sequence is unknown, the rest of the ROP sequence is relative
to that entry point.

It is important to note that both, the ASLR and the canary
techniques, have the same weakness on forking servers: all the
children have the same memory layout as well as the same
canary value. Unfortunately, as far as the authors know, there
is not a simple method to re-randomise the ASLR on forked
children. We will assume that all the forked children have
the same ASLR value which allows the attacker to perform
a brute force on it. The attacker has to create a brute force (or
a probabilistic) attack to obtain the value of the two secrets:
i) canary value and ii) ROP entry address. Let j be the
number of different values where the ASLR algorithm can
map the memory (i.e. the ASLR entropy).

We assume that the return address can only be overwritten
if the canary is known. That is, the server’s code checks always
the canary first, and only returns from the function if it is
correct. This behaviour allows the attacker to split the attack
in two phases: first the value of the canary is found and then
the value of the ROP entry address. A detailed analysis of how
the three techniques can be bypassed can be found in [11].
The attack to the ASLR follows the same pattern as the attack
to the canary, it is a uniform distribution, sampling without
replacement, whose mean is j/2 and the support is [1, j].

Using the standard SSP, the attack to the server is modelled
as the sum of two uniforms distributions (which gives a
trapezoidal distribution). If one of the uniforms has a much



larger support range than the other (c� j), as it is in our case,
the sum can be approximated by a simple uniform distribution
with a mean of (c+ j)/2 and a range of [2, c+ j − 1].

When the RAF SSP is used, it is not possible to split
the attack because any incorrect guess (either canary value
or ROP entry point) causes a canary renewal2. Since c � j,
it is possible to approximate the resulting distribution to a
geometric with a mean of c× j and support [2,∞[.

Figure 5 shows the success probability of an attack on a
standard system and when the RAF SSP technique is used on
a real system. The x-axis is in logarithmic scale.
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Fig. 5. Success of an attack against both: SSP and ALSR.

When the RAF SSP is used, the cost of the attack is
calculated as result of the multiplication of the cost of each
part: canary and ASLR. While in a normal system it is only
the sum of each part. It takes at most 224 + 28 trials to break
in a standard system, the system is broken with a 100% of
probability. Using the RAF SSP technique, the chances of
breaking in the system using the same number of trials is
only 0.004%. On average, a 32bits system using the RAF SSP
requires 512 times more trials to break.

VII. EXPERIMENTAL EVALUATION

The RAF SSP relies on the infrastructure of the standard
SSP. Therefore, it does not increases the runtime cost operation
of the application except when the fork operation is invoked.
The temporal overhead can be reduced to the cost of generating
a random word every time the fork() system call is called.

The temporal cost of renewing the canary is determined by
the renew randomly stack chk guard() function. The average
cost of calling this function one million times is 2µs on an Intel
CoreTM 2 Duo CPU at 2.4Ghz.

Regarding the spatial cost: the memory size of the appli-
cation is not increased, no new data structures are used, and
no new code is generated by the compiler; also, no new data
structures or buffers are needed in the library, only a few lines
of code have to be included.

The RAF SSP has been tested with the following network
servers: apache2, lighttpd, proftpd and samba. We will describe
only the apache2 benchmarks.

2A detailed analysis of attacker strategies and the associated statistical
distribution is beyond the scope of this paper. It will be published in an
incoming paper.

We have used the Apache (apache2-mpm-prefork) binary
included in the Ubuntu (12.04) distribution with the default
configurations 4 and the Apache HTTP server benchmarking
tool (ab) tool to generate the client workload.

<IfModule mpm_prefork_module>
StartServers 5
MinSpareServers 5
MaxSpareServers 10
MaxClients 150
MaxRequestsPerChild 0

</IfModule>

Listing 4. Apache configuration parameters.

The ab tool was configured to perform requests of size
1KB, 10KB and 100KB, and each size was tested with 10,
50 and 100 concurrent requests (concurrency column). Each
experiments consists of 106 requests.

Latency Throughput
(ms) (KB/s)

Concurrent SSP RAF SSP SSP RAF SSP

1K
B 10 0.094 0.093 12 12

50 0.097 0.097 12 12
100 0.097 0.098 12 12

10
K

B 10 0.095 0.095 104 104
50 0.099 0.099 101 100

100 0.102 0.101 98 99

10
0K

B 10 0.135 0.135 725 723
50 0.142 0.143 690 683

100 0.164 0.164 598 596
TABLE II. PERFORMANCE OVERHEAD COMPARATIVE.

Table II shows the average of each experiment. There is
not significant differences between standard and RAF SSP
apart from the variability introduced by the processor and
operating system features. The small overhead caused by RAF
SSP is practically undetectable when analysing the complete
operation of the server.

We have installed a modified version of the eglibc (with
the RAF SSP enabled at fork) in a Ubuntu Linux distribution,
and all the tested applications worked correctly: all graphical
services, several browsers, several text editors (LibreOffice),
java Open JDK interpreter, etc.

VIII. DISCUSSION

The sequence fork() + exec() provides a very robust
security schema because of the strong decoupling between the
father and the children. The exec call renews both the value of
the canary and the addresses of the code (ASLR). With respect
to the canary, our technique is as powerful as calling exec but
without the high overhead of the exec call.

Contrarily to other approaches where the canary is different
in each stack frame [12], our approach changes the canary
for every error confinement region. From the attacker point
of view, the target stack frame is the one that belongs to the
faulty function. The rest of the stack frames have no interest
to the attacker. On a network server, only the code executed
by the child sever are prone to attacks and in that code the
canary is always re-randomised by the RAF SSP.



Standard SSP RAF SSP

Trials to break in Trials to break in Mean increased
100% Mean 100% Mean by a factor of

SSP bfb 3× 28 3× 27 ∞ 224 43691
SSP full 224 223 ∞ 224 2
SSP bfb+ASLR 3× 28 + 28 29 ∞ 232 32768
SSP full+ALSR 224 + 28 223 + 27 ∞ 232 512

TABLE I. STANDARD SSP VERSUS RAF SSP (c = 224, j = 28).

Our technique does not modify the coverage protection of
the SSP technique. If a programming error can be exploited in
such a way that the SSP technique fail to detect it, then RAF
SSP will fail too. But if a stack smashing is detected, then our
modified system will also detect it and makes more difficult
to exploit it.

Since the overhead of the RAF SSP occurs only at the fork
call, the less forks are done by the server the less overhead.
For example, a pre-forked server have zero overhead as far a
no new children are launched. If the server children processes
are being killed during an attack (due to incorrect guesses on
brute force attack) then the new children have newly random
canaries. That is, the RAF SSP acts only when it is effectively
required while during normal operation it has zero impact.

In the sectionVI-B we evaluate the cost of an attack when
the three most common protection techniques are simultane-
ously employed, and show that the combined effectiveness can
be computed as the product of each one because the attacks can
not be split. Since the canary is typically the first barrier to be
bypassed, the RAF SSP causes the same multiplicative effect
when combined with other techniques, as far as any incorrect
trial on any technique applied afterwards will renew the canary
and so the attacker will be forced to start over again.

IX. CONCLUSIONS

This paper reconsiders the idea of renewing the canary
at ever new process creation (at fork time), and not only
when a new image is loaded (at exec time). The current
implementation of stack guard generates a new random canary
for every new process image, that is, when the exec() is
called. All the children processes inherit the value of the canary
from the father. We propose to renew the canary value on every
child. This is specially effective on multi-process networked
servers where the main server forks processes to concurrently
attend several clients.

We believe that a non accurate statistical understanding of
the re-randomisation effect may had discouraged other authors
from considering the benefits of the this technique. We show
that re-randomise the canary improves the protection against
attacks several, specially when combined with other commonly
used protection techniques, several orders of magnitude with
a negligible cost.

The new technique is called RAF SSP (Renew After Fork
Stack Smashing Protector) and has the following properties:

• The RAF SSP strategy has a negligible overhead.
• The canary brute force attack, specially the byte-for-byte

variant, is not longer possible.

• While the attack to the standard SSP follows a Uniform
distribution, the attack to the RAF SSP is a Geometric
distribution.

• The solution can be implemented by means of a preloaded
share library, therefore it does not require to modify the
source code of the server or recompile it, nor modify the
operating system, neither the system libraries.

• The RAF SSP has been validated with several network
servers: apache2, lighttpd, proftpd and samba without
modifying the source code nor recompiling.
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